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Anharmonic effects in ferromagnetic semiconductors
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Department of Physics, University of Sofia, Boulevard J Bouchier 5, 1126 Sofia, Bulgaria

Received 8 March 1995

Abstract. A Green function technique is used to study the anharmonic spin–phonon and
phonon–phonon interaction effects on optical phonon modes and spin-wave excitations
in ferromagnetic semiconductors. The cubic spinels have been investigated because the
magnetostriction of these compounds is small and the direct contribution of spin ordering to
the phonon modes can be clearly observed. The phonon and spin-wave energy and damping
are evaluated for the first time beyond the random-phase approximation. The temperature
dependence of these quantities is discussed and is found to be in good agreement with the
experimental data.

1. Introduction

In recent years, the effects of spin ordering on phonon properties have been investigated
for many magnetic crystals, such as the Cr spinels, EuX (X= O, S, Te or Se) and
fluorite-type compounds [1, 2]. The phonon frequency and the phonon damping have
been determined from the spectra. The effects of spin ordering on the phonon modes
in ACr2X4 were directly observed from experiments. In the spinels these values showed
anomalous shifts characterizing the spin ordering effect [2]. For infrared-active phonons
in cubic antiferromagnetic KNiF3, Sintani et al [3] observed a small but rapid frequency
shift at the Curie temperatureTC . They assigned this to the effect of spin ordering and
evaluated the change in the force constant modulated by the spin ordering. For several
cubic spinels, Wakamura and Arai [4] observed the temperature dependence ofωl0 andωt0

for all the infrared-active modes. These modes exhibit a rapid frequency shift atTC and
an appreciable shift to a temperatureT0, which is higher thanTC [4]. We made an attempt
to explain these anomalies theoretically, on the basis of the anharmonic phonon–phonon
interaction. It was established that aboveTC , i.e. in the higher-temperature region, there
exists good agreement with the experimental data for magnetic crystals and in the whole
temperature region for non-magnetic crystals. However, belowTC there is a large deviation
in the theoretical curves from the experimental curves, which could be attributed to the spin
ordering effect. Only the interaction between the spin and phonon subsystems may explain
these phenomena.

There are only a few papers which consider magnon damping in ferromagnetic
semiconductors, taking into account the spin–phonon interaction. In [5–7] the calculation
generally employs the Holstein–Primakoff transformation of the spin operators and is valid at
low temperaturesT � TC , where this type of interaction describes two-magnon–one-phonon
processes. The Green function methods and the random-phase approximation (RPA) were
used in [8, 9] for temperatures belowTC . Wesselinowa and Apostolov [10] have studied
the effects of the spin–phonon interaction on the spin-wave energy and transverse damping.
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Spin-wave damping was observed experimentally for CdCr2Se4 and CdCr2S4 by Anisimov
and Green [11] and for EuO by Gurevich and Anisimov [12]. They found that the spin-wave
damping increases strongly when the temperature increases, and that the magnon damping
is nearly independent of the wavevectork in a wide region(|k| = 0–2× 106 cm−1) at low
temperatures.

The aim of the present paper is to extend our previous work [10] and to study
theoretically the influence of the anharmonic spin–phonon interaction on the phonon and
spin-wave spectrum in cubic spinels.

2. Model and method

The full Hamiltonian for the anharmonic magnetic crystal may be written as

H = Hd + Hs + Hsd + Hph + Hsp. (1)

Hd is the Heisenberg Hamiltonian for the ferromagnetically ordered electrons:

Hd = − 1
2

∑
q

Jq(S
z
qS

z
−q + S−

q S+
q ) − gµBH

√
NSz

0. (2)

Hs represents the usual Hamiltonian of the conduction band electrons:

Hs =
∑
q,σ

(εqσ − µ)c+
qσ cqσ (3)

where σ = ±1, cqσ and c+
qσ are the Fermi operators of annihilation and creation,

respectively, in the stateqσ , µ is the chemical potential andεqσ are the Bloch energies.
Hsd is the s–d interaction term which couples the two subsystems (2) and (3) by an

intratomic exchange interaction:

Hsd = − I

2N

∑
q,p

[S+
q−pc+

p−cq+ + S−
q−pc+

p+cq− + Sz
q−p(c+

p+cq+ − c+
p−cq−)] (4)

whereI is the interaction constant.
Hph contains the lattice vibrations including third- and fourth-order anharmonic phonon–

phonon interactions:

Hph = 1

2!

∑
q

(PqP−q + ω2
qQqQ−q) + 1

3!

∑
q,q1

B(q, q1)QqQ−q1Qq1−q

+ 1

4!

∑
q,q1,q2

A(q, q1, q2)Qq1Qq2Q−q−q2Q−q1+q (5)

whereQq , Pq and ωq are the normal coordinate, momentum and frequency, respectively,
of the lattice mode with a wavevectorq. The vibrational normal coordinateQq and the
momentumPq can be expressed in terms of phonon creation and annihilation operators:

Qq = (2ωq)
−1/2(aq + a+

−q) Pq = i(ωq/2)1/2(a+
q + a−q) (6)

where [aq; a+
p ]− = δqp.

Hsp describes the interaction of the spin with the phonons:

Hsp = − 1
2

∑
q,p

F (p, q)Qp−q(S
z
qS

z
−p + S−

q S+
p )

− 1
4

∑
q,p,ν

R(ν, p, q)QνQp−q−ν(S
z
qS

z
−p + S−

q S+
p )

− 1
12

∑
q,p,ν,µ

T (µ, ν, p, q)QµQνQp−q−ν−µ(Sz
qS

z
−p + S−

q S+
p ) (7)
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where

F(p, q) = 1√
N

∑
h

1

|h|
(ep−q · h)

(2ωp−q)1/2
J ′(h)(exp(ip · h) + exp(iq · h))

R(ν, p, q) = 1

N

∑
h

[(
J ′′(h) − J ′(h)

|h|
)

(eν · h)(ep−q−ν · h) + J ′(h)

|h| (eν · ep−q−ν)

]
×(1 − exp(iν · h))(exp(ip · h) + exp(iq · h))(4ωνωp−q−ν)

−1/2

T (µ, ν, p, q) = 1

N3/2

∑
h

{ [
J ′′′(h) −

(
2

|h| + 1

|h|2
)

J ′′(h) + 4J ′(h)

|h|3
]

(eν · h)(eµ · h)

×(ep−q−ν−µ · h) +
(

J ′′(h)

|h|2 − J ′(h)

|h|3
)

(eν · h)(eµ · ep−q−ν−µ)

}
×(1 − exp(iν · h))(1 − exp(iµ · h))(exp(ip · h) + exp(iq · h))

×(8ωνωµωp−q−ν−µ)−1/2.

The summations extend over the vectorsh = ri − rj connecting all possible pairs of spin
sites in the crystal andeq is the polarization of the phonon with wavevectorq.

The retarded Green function to be calculated is defined in matrix form as

Gk = −iθ(t)〈[Bk(t); B+
k ]−〉. (8)

The operatorBk stands symbolically for the setS+
k ;

∑
p c+

p+k+cp−; ak; a+
−k. For

the approximate calculation of the Green function (8) we use a method proposed by
Tserkovnikov [13], which is appropriate for spin problems.

After a formal integration of the equation of motion for (8), one obtains

Gk(t) = −iθ(t)〈[Bk; B+
k ]−〉 exp(−i�k(t)t) (9)

where

�k(t) = �k − i

t

∫ t

0
dt ′ t ′

( 〈[jk(t); j+
k (t ′)]−〉

〈[Bk(t); B+
k (t ′)]−〉

−〈[jk(t); B+
k (t ′)]−〉〈[Bk(t); j+

k (t ′)]−〉
〈[Bk(t); B+

k (t ′)]−〉2

)
(10)

with the notationjk(t) = 〈[Bk; Hint ]−〉. The time-independent term

�k = 〈[[Bk; H ]−; B+
k ]−〉

〈[Bk; B+
k ]−〉 (11)

is a 4× 4 matrix. If we neglect the time-dependent term at�k(t) for the Green function,
we obtain

Gk(t) = −iθ(t)〈[Bk; B+
k 〉 exp(−i�kt)

= −iθ(t)〈[Bk; B+
k ]〉Uk exp(−iWkt)U

−1
k (12)

where the matrixUk consists of columns, which are the eigenvectors of�k and Wk =
U−1

k �kUk is a diagonal matrix with components the roots of the characteristic equation for
�k:

det|�k − WI | = 0 (13)

whereI is the unit matrix. The roots of (13) determine the energy of the coupled mode in
the generalized Hartree–Fock approximation. The time-dependent term includes damping
effects.
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3. The phonon spectrum

3.1. The phonon energy

For the optical phonon energy we obtain the following expression:

ω̄k = ±[(ω11
k )2 + (ω12

k )2]1/2 (14)

where

ω11
k = ωk −

∑
q

R(k, q, q)(〈Sz
qS

z
−q〉 + 〈S−

q S+
q 〉)

−
∑
q,p

T (k, −k, p, q)〈Qp−q〉(〈Sz
qS

z
−p〉 + 〈S−

q S+
p 〉) + B(k, −k, 0)〈Q0〉

+ 1

2N

∑
q

{A(k, −k, q,−q) + A(q, −k, −q, k)}(2N̄q + 1) (15)

ω12
k =

∑
q

R(k, q, q)(〈Sz
qS

z
−q〉 + 〈S−

q S+
q 〉)

+
∑
q,p

T (k, −k, p, q)〈Qp−q〉(〈Sz
qS

z
−p〉 + 〈S−

q S+
p 〉) − B(k, −k, 0)〈Q0〉

− 1

2N

∑
q

{A(k, −k, q,−q) + A(q, −k, −q, k)}(2N̄q + 1) (16)

where

N̄q = 〈a+
q aq〉 = 1/[exp(ω̄q/T ) − 1] (17)

and

〈Qp−q〉 =
( ∑

q1

F(p − q − q1, q1)(〈Sz
q1

Sz
q+q1−p〉 + 〈S−

q1
S+

p−q1−q〉)

+ 1

N

∑
q1,p1

T (q − p, ν, p1, q1)(1 + 2〈aνa
+
p1+q1+ν〉)(〈Sz

q1
Sz

−p1
〉 + 〈S−

q1
S+

p1
〉)

− 1

N

∑
q1

B(q1, p − q − q1, p − q)(1 + 2〈a+
q+q1−paq1〉)

)
×

(
ωp−q −

∑
q1

R(q − p, q1, q1)(〈Sz
q1

Sz
−q1

〉 + 〈S−
q1

S+
q1

〉)

+ 1

N

∑
q1

{A(p − q, q − p, q1, −q1)

+A(q1, −q1, p − q, q − p)}(2N̄q1 + 1)

)−1

. (18)

If we neglect the transverse correlation function〈S−
q S+

q 〉 and decouple the longitudinal
correlation function〈Sz

qS
z
−q〉 → 〈Sz

0〉2δq0 (RPA) for ω̄k, we obtain

ω̄2
k = (ωk)

2 − 2ωk

(
Rk〈Sz〉2 + Tk〈Sz〉2〈Qk〉δk0 − 1

2N

∑
q

Aqk(2N̄q + 1) − Bk〈Qk〉δk0

)
(19)

where

〈Qk〉 =
(

Fk〈Sz〉2 + 1

N

∑
q

Tkq(2N̄q + 1)〈Sz〉2 − 1

N

∑
q

Bkq(2N̄q + 1)

)
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×
(

ωk − Rk〈Sz〉2 + 1

N

∑
q

Akq(2N̄q + 1)

)−1

. (20)

The optical phonon energȳωk is renormalized owing to the anharmonic phonon–phonon
and spin–phonon interactions. If they are not taken into account, thenω̄k is identical with
the energyωk of the uncoupled optical phonon. It will be independent of temperature.

We have studied numerically the temperature dependence of the phonon energy for the
phonon modesω0 = 100 cm−1 (D mode) andω0 = 381 cm−1 (A mode) [4], for CdCr2Se4

using the following model parameters:I = 0.5 eV,J0 = 0.0001 eV,W = 1.0 eV,S = 1.5,
B = −2.54 cm−1, A = 6.61 cm−1, F = 23 cm−1, T = 1.4 cm−1 and different values ofR.
These modes display a non-linear temperature dependence (figures 1–3). Their temperature
dependence is in very good agreement with the experimental data [4].

Figure 1. Temperature dependence of the phonon D mode withω0 = 100 cm−1 with the
following model parameters: curve 1,B = −2.54 cm−1, A = 6.61 cm−1, F = 23 cm−1,
R = −18 cm−1, T = 1.4 cm−1; curve 2,B = −2.54 cm−1, A = 6.61 cm−1, F = 23 cm−1,
R = T = 0; curve 3,B = −2.54 cm−1, A = F = R = T = 0; curve 4,B = −2.54 cm−1,
A = 6.61 cm−1, F = R = T = 0.

From figure 1 we may conclude that firstly, if we take into account only the third-
order phonon–phonon interaction, we obtain a linear temperature dependence (curve 3) and
secondly using only the anharmonic phonon–phonon interaction (curve 4) could not explain
the temperature dependence belowTC (see the introduction).

Figures 2 and 3 exhibit the different behaviours of the D and A modes, respectively.
This frequency shift in spinels, belowTC , can be explained only if we assume a spin-
dependent force constant given by the first, second and third derivatives of the magnetic
exchange interactionJij between theith andj th magnetic ions with respect to the phonon
displacementsui , uj . This displacement is interpreted by taking the nearest-neighbour
ferromagnetic exchange integralJij and the next-nearest-neighbour antiferromagnetic
exchange integralKik. Jij andKik represent the integrals through the linkage of Cr–X–Cr
and Cr–X–A–X–Cr, as shown by the double lines in figure 4. The magnetic properties
were changed predominantly by the second-neighbour exchange interaction. The squared
derivatives ofJij and Kik with respect to the phonon displacement have opposite signs
and, if we denote themR1 andR2 accordingly, then the additional shift1ω of the phonon



478 J M Wesselinowa and A T Apostolov

Figure 2. Temperature dependence of the phonon D mode withω0 = 100 cm−1 for
B = −2.54 cm−1, A = 6.61 cm−1, F = 23 cm−1, T = 1.4 cm−1 and for different values
of R: curve 1,R = −15 cm−1; curve 2,R = −12 cm−1; curve 3,R = −7 cm−1; curve 4,
B = −2.54 cm−1, A = 6.61 cm−1, F = R = 0.

Figure 3. Temperature dependence of the phonon A mode withω0 = 381 cm−1 for
B = −2.54 cm−1, A = 6.61 cm−1, F = 23 cm−1, T = 1.4 cm−1 and for different values of
R: curve 1,R = 3 cm−1; curve 2,R = 1 cm−1; curve 3,F = R = T = 0.

frequency may be written as [1]

1ω = [R1〈S1S2〉 − R2〈S1S3〉]/〈Sz
0〉2. (21)

In our model the force constantR is equal toR1 − R2.
From figure 2 we see that the D mode exhibits a relatively large shift belowTC , which

increases with increasing|R|. This can be explained by the large magnitude ofR2 in
comparison with that ofR1, which is predicted by the large pressure dependence ofKik,
estimated from the Curie temperature [14, 15]. ThenR1 − R2 < 0, i.e.R < 0.
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Figure 4. The unit cell of the spinel structure. The structure can be described using two types
of cubic octan. The shaded and full circles indicate the A and Cr atoms, respectively. The
open circles are the X atoms. The linkages of ferromagnetic Cr–X–Cr and antiferromagnetic
Cr–X–A–X–Cr are depicted between Cr(1) and Cr(2) atoms and between Cr(1) and Cr(3) atoms,
respectively, by double lines.

Figure 3 displays the opposite frequency shift of the A mode. This has been explained
by combining the dominant contribution of the Cr ion to the A mode and the linkage of
Jij . In this case,R1 has a large value. ThenR1 − R2 may become positive, i.e.R > 0.

The calculations demonstrate that, if we want to obtain a correct temperature dependence
of the phonon modes in ferromagnetic semiconductors, we must not neglect the effects of
spin ordering, and the Hamiltonian which describes the system must include terms taking
into account not only the anharmonic phonon–phonon interaction but also the anharmonic
spin–phonon interaction.

3.2. Phonon damping

In the calculations for the integral term in equation (10) which includes damping effects,
we use the approximate dynamics

Sk(t) ∼ Sk exp(−iEkt) ak(t) ∼ ak exp(−iω̄kt). (22)

Then we obtain the following expression for phonon damping:

γ ph(k) = γsp(k) + γph–ph(k). (23)

γsp(k) is the damping part which comes from the spin–phonon interaction:

γsp(k) = 4π〈Sz〉2

N

∑
q

F 2(q, q − k)(n̄q − n̄q−k)δ(Eq−k − Eq − ω̄k)

+4π〈Sz〉2

N2

∑
q,p

{R2(−k, p, q)(n̄q − n̄p)[(1 + N̄k+p−q)

×δ(Ep − Eq − ω̄k+p−q + ω̄k) + N̄q−k−pδ(Ep − Eq + ω̄q−k−p + ω̄k)]
+[R2(−k, p, q) + R2(k − q + p, p, q)]n̄q(1 + n̄p)

×[δ(Ep − Eq − ω̄k+p−q + ω̄k) − δ(Ep − Eq + ω̄q−k−p + ω̄k)]

+ π

N2

∑
q,p

[R2(−k, p, q) + R2(k − q + p, p, q)]〈Sz
pSz

−p〉〈Sz
qS

z
−q〉

×[δ(Ep − Eq − ω̄k+p−q + ω̄k) − δ(Ep − Eq + ω̄q−k−p + ω̄k)]
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+4π〈Sz〉2

N3

∑
q,p,ν

{[T 2(−k, ν, p, q) + T 2(k + p − q − ν, ν, p, q)]

×[n̄q(1 + n̄p)(1 + N̄ν + N̄k+p−q−ν) + (n̄q − n̄p)N̄νN̄k+p−q−ν ]
+[T (−k, ν, p, q)T (−k, k + p − q − ν, p, q)

+T (k + p − q − ν, ν, p, q)T (k + p − q − ν, k + p − q − ν, p, q)]
×[n̄q(1 + n̄p)(1 + N̄k+p−q−ν) + n̄p(1 + n̄q)N̄k+p−q−ν ]}
×δ(Ep − Eq − ω̄ν − ω̄k+p−q−ν + ω̄k)

+4π〈Sz〉2

N3

∑
q,p,ν

[T 2(−k, ν, p, q) + T 2(k + p − q − ν, ν, p, q)]

×{[n̄q(1 + n̄p)N̄q+ν−p−k − n̄p(1 + n̄q)N̄ν + (n̄q − n̄p)N̄νN̄q+ν−p−k]
×δ(Ep − Eq − ω̄ν +ω̄q+ν−p−k+ω̄k)+[n̄q(1 + n̄p)N̄ν − n̄p(1 + n̄q)N̄p+k+ν−q

+(n̄q − n̄p)N̄νN̄ν+p+k−q ]δ(Ep − Eq + ω̄ν − ω̄ν+p+k−q + ω̄k)}
+4π〈Sz〉2

N3

∑
q,p,ν

{[T 2(−k, ν, p, q) + T 2(k + p − q − ν, ν, p, q)]

×[(n̄q − n̄p)N̄νN̄q−ν−p−k − n̄p(1 + n̄q)(1 + N̄ν + Nq−ν−p−k)]
−[T (−k, ν, p, q)T (−k, k + p − q − ν, p, q) + T (k + p − q − ν, ν, p, q)

×T (k + p − q − ν, k + p − q − ν, p, q)][ n̄q(1 + n̄p)N̄q−k+p+ν

+n̄p(1 + n̄q)(1 + Nq−ν−p−k)]}δ(Ep − Eq − ω̄ν + ω̄q−ν−p−k + ω̄k)

+ π

N3

∑
q,p,ν

[T 2(−k, ν, p, q) + T 2(k + p − q − ν, ν, p, q)]〈Sz
pSz

−p〉〈Sz
qS

z
−q〉

×{(1 + N̄ν + N̄k+p−q−ν)[δ(Ep − Eq − ω̄ν − ω̄k+p−q−ν + ω̄k)

−δ(Ep − Eq − ω̄ν + ω̄q−ν−p−k + ω̄k)] + (N̄ν − N̄k+p−q−ν)

×[δ(Ep − Eq + ω̄ν − ω̄ν+p+k−q + ω̄k)

−δ(Ep − Eq − ω̄ν + ω̄q+ν−p−k + ω̄k)]}
+ π

N3

∑
q,p,ν

[T (−k, ν, p, q)T (−k, k + p − q − ν, p, q)

+T (k + p − q − ν, ν, p, q)T (k + p − q − ν, k + p − q − ν, p, q)]
×〈Sz

pSz
−p〉〈Sz

qS
z
−q〉(1 + 2N̄p+k−q−ν)[δ(Ep − Eq − ω̄ν − ω̄k+p−q−ν + ω̄k)

−δ(Ep − Eq − ω̄ν + ω̄q−ν−p−k + ω̄k)]. (24)

γph–ph(k) is the phonon damping due to the phonon–phonon anharmonic interaction:

γph–ph(k) = 3π

N

∑
q

[B2(q, −k, k − q) + B2(q, k − q, −k)](N̄q − N̄k−q)

×[δ(ω̄k − ω̄q − ω̄k−q) + δ(ω̄k − ω̄q + ω̄q−k)]

+ 8π

N2

∑
q,p

[A2(q, −k, p, k − q − p) + A2(q, p,−k, k − q − p)]

×[N̄p(1 + N̄q + N̄p+k−q) − N̄qN̄p+k−q ]δ(ω̄k − ω̄q + ω̄p − ω̄k+p−q) (25)

where

〈Sz〉 = 1

N

∑
k

[
(S + 1

2) coth

(
(S + 1

2)Ek

kBT

)
− 1

2 coth

(
Ek

2kBT

)]
(26)

n̄q = 〈S−
q S+

q 〉/2〈Sz〉{(ε11
q /Eq) coth[Eq/2kBT ] − 1}. (27)

Eq andε11
q are the spin-wave energy and one of its matrix elements, respectively, which

will be calculated in the next section.
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At T = 0, whereγph–ph(k) vanishes, we obtain

γ ph(k; T = 0) = π〈Sz〉4

N2

∑
q,p

[R2(−k, p, q) + R2(k − q + p, p, q)]

×[δ(Ep − Eq − ω̄k+p−q + ω̄k) − δ(Ep − Eq + ω̄q−k−p + ω̄k)]δq0δp0

+π〈Sz〉4

N3

∑
q,p,ν

{T (−k, ν, p, q)[T (−k, ν, p, q) + T (−k, k + p − q − ν, p, q)]

+T (k + p − q − ν, ν, p, q)[T (k + p − q − ν, ν, p, q)

+T (k + p − q − ν, k + p − q − ν, p, q)]}
×[δ(Ep − Eq − ω̄ν − ω̄k+p−q−ν + ω̄k)

−δ(Ep − Eq − ω̄ν + ω̄q−ν−p−k + ω̄k)]δq0δp0. (28)

It is seen that atT = 0 the phonon modes are damped due to the spin–phonon interaction
if the δ-function can be satisfied. Only the spin–phonon anharmonic terms contribute to
γ ph(k) at T = 0.

The expression for the damping atT > TC is γ ph(k, T > TC) = γph–ph(k), because
γsp(k, T > TC) = 0, i.e. only the phonon–phonon anharmonic terms contribute to the
phonon damping in the vicinity ofTC and above it. This is because we have decoupled
the longitudinal Green function, i.e.〈Sz

qS
z
−q〉 → 〈Sz

0〉2δq0. If we take into account these
correlation functions we would obtain a finite contribution from the spin–phonon interaction,
i.e. γsp(k; T > TC) 6= 0.

The phonon dampingγ ph(k) was calculated numerically using the same parameters as
for ω̄k for the A mode. Figure 5 shows the temperature dependence of the phonon damping.
The damping is extremely small at low temperatures. ApproachingTC, γ ph(k) increases.
The calculated curve is sufficiently consistent with the experimental curve for the A mode
presented by Wakamura and Arai [2]. It has been shown that the spin–phonon anharmonic
terms play an important role at low temperatures, whereas the anharmonic phonon–phonon
interaction is important atT > TC .

4. The spin-wave spectrum

4.1. The spin-wave theory

For the spin-wave energyEk in the generalized Hartree–Fock approximation we obtain

E1/2(k) = 0.5{(ε11
k + ε22

k ) ± [(ε11
k − ε22

k )2 + 4ε12
k ε21

k ]1/2} (29)

where

ε11
k = gµBH + 1

2〈Sz〉
(

1

N

∑
q

(Jq − Jk−q)(2〈Sz
qS

z
−q〉 + 〈S−

q S+
q 〉)

+ I

N2

∑
q,p

(〈S−
p−qc

+
p+cq−〉 + 〈Sz

q−pc+
p+cq+〉 − 〈Sz

q−pc+
p−cq−〉)

+ 1

N

∑
q,p

[Fkpq〈Qk−p−q〉(2〈Sz
qS

z
p−k〉 − 〈S−

k−qS
+
p 〉) + F(p, q)〈Qp−q〉〈Sz

q−p〉]

+ 1

2N

∑
q,p,ν

[Rνkpq〈QνQk−p−q−ν〉(2〈Sz
qS

z
p−k〉 − 〈S−

k−qS
+
p 〉)

+R(ν, p, q)〈QνQp−q−ν〉〈Sz
q−p〉]

+ 1

3N

∑
q,p,ν,µ

[Tµνkpq〈QµQνQk−p−q−ν−µ〉(2〈Sz
qS

z
p−k〉 − 〈S−

k−qS
+
p 〉)
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Figure 5. Temperature dependence of phonon damping withω0 = 381 cm−1 andR > 0: curve
1, total phonon dampingγ ph(k); curve 2, phonon dampingγph–ph(k) from the anharmonic
phonon–phonon interaction; curve 3, phonon dampingγsp(k) due to the s–p interaction.

+T (µ, ν, p, q)〈QµQνQp−q−ν−µ〉〈Sz
q−p〉]

)
(30)

ε12
k = I

2ρN2

( ∑
q,p

(〈Sz
k−q+pc+

p−k−cq−〉 − 〈Sz
k−q+pc+

p+cq+k+〉)

− 1
2

∑
q,p

(〈S+
k+q−pc+

p−k−cq+〉 − 〈S+
k+q−pc+

p−cq+k+〉
)

(31)

ε21
k = I

2〈Sz〉N2

( ∑
q,p

(〈Sz
q−p−kc

+
p−cq−k−〉 − 〈Sz

q−p−kc
+
p+k+cq+〉)

− 1
2

∑
q,p

(〈S−
k−q+pc+

p+cq−k−〉 − 〈S+
k−q+pc+

p+k+cq−〉)
)

(32)

ε22
k = 2µBH + I

2ρN2

∑
q,p

(〈S+
p−qc

+
p−cq+〉 + 〈Sz

q−pc+
p+cq+〉 − 〈Sz

q−pc+
p−cq−〉) (33)

where

Fkpq = F(k − p, q) − F(p, k − q)

Rνkpq = R(ν, k − p, q) − R(ν, p, k − q)

Tµνkpq = T (µ, ν, k − p, q) − T (µ, ν, p, k − q).

The matrix elementsεij

k of the spin-wave energy belowTC , when we neglect the
transverse correlation function〈S−

q S+
q 〉 and decouple the longitudinal correlation function
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〈Sz
qS

z
−q〉 → 〈Sz〉δq0 are (RPA)

ε11
k = gµBH + 〈Sz〉(Jeff − Jk) + Iρ

ε12
k = −I 〈Sz〉

ε21
k = −Iρ

ε22
k = 2µBH + I 〈Sz〉

(34)

where

Jeff = J0 + 1
2Fk〈Qk〉 + 1

2N

∑
ν

Rνk(2N̄ν + 1) + 1

2N

∑
ν

Tνk(2N̄ν + 1)〈Qk〉 (35)

with 〈Qk〉 from equation (20).
Therefore the anharmonic spin–phonon interaction causes a renormalization of the spin–

spin interaction constantJ0 → Jeff below TC . Now Jeff is temperature dependent.
ρ is the conduction-electron magnetization and is given by

ρ = n+ − n−
2N

= 1

2N

∑
qσ

σ 〈c+
qσ cqσ 〉 (36)

wheren+ andn− are the numbers of conduction electrons in spin-up and spin-down bands,
respectively. In order to calculateρ, it is necessary to define a one-electron Green function
by Gσ(k) = 〈〈c+

kσ ckσ 〉〉. The electron energy is obtained as

ξσ (k) = ξ0
k − µ − σ(µBH − 0.5I 〈Sz〉) (37)

whereξ0
k is the conduction band energy in the paramagnetic state andµ is the chemical

potential. For a simple-cubic lattice and next-neighbour interactionξ0
k is given by

ξ0
k = −W

3
[cos(kxa) + cos(kya) + cos(kza)]

whereW is the conduction band width.
For the electron correlation function we have

m̄qσ = 〈c+
qσ cqσ 〉 = 1/[exp(ξqσ /kBT ) + 1]. (38)

The spin-wave energy was numerically calculated taking parameters for CdCr2Se4.
Figure 6 demonstrates the temperature dependence of the spin-wave energy; curve 2 shows
E+(T ) without the spin–phonon interaction, and curves 1 and 3 showE+(T ) with the
anharmonic spin–phonon interaction forR < 0 andR > 0, respectively, included. If we
take into account the scattering of the spin excitation from the phonons, keeping not only
the one-phonon influence, we see that the phase transition temperatureTC is changed.

The temperature dependences ofJeff for different R-values are plotted in figure 7.
The effective spin–spin interaction displays a non-linear temperature dependence. One may
expect that the consideration of the spin–phonon interaction will lead to a considerable
change inTC , but we do not observe that in figure 6. The reason is the s–d interaction. In
our real system,I � Jeff . Theoretically the change inJ0 is an effect which is due to the
higher-order perturbation in the spin-wave energy and this does not change the values of
〈Sz〉 andTC considerably.
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Figure 6. Temperature dependence of the spin-wave energyE+(k) for R < 0 (curve 1),R = 0
(curve 2) andR > 0 (curve 3).

Figure 7. Temperature dependence of the effective spin–spin interactionJeff (T ) for different
values ofR: curve 1,R = 2 cm−1; curve 2,R = −3 cm−1; curve 3,R = −18 cm−1.

4.2. Spin-wave damping

In order to obtain spin-wave damping caused by the spin–phonon interaction, we consider
the integral term (11). In our calculations we use the approximate dynamics

Sk(t) ∼ Sk exp(−iEkt) ckσ (t) ∼ ckσ exp(−iξkσ ) ak(t) ∼ ak exp(−iω̄kt)

whereEk, ξkσ and ω̄k come from (29), (37) and (14), respectively. This assumption takes
the generalized Hartree–Fock approximation as a starting approximation.

Calculations yield the following expression for the transverse dampingγ s(k):

γ s(k) = γss(k) + γsd(k) + γsp(k). (39)
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γss is the damping part which arises from the spin–spin interaction:

γss(k) = 2π〈Sz〉2

N2

∑
q,p

V 2
kqp[n̄p(1 + n̄k−q + n̄p+q) − n̄k−q n̄p+q ]δ(Ep+q + Ek−q − Ep − Ek)

(40)

whereVkqp = (Jq + Jk−q−p) − (Jk−q + Jp+q).
γsd is the damping which arises from the interaction between the ferromagnetically

ordered and the conduction band electrons:

γsd(k) = 2πI 2〈Sz〉
N3

∑
q,p,r

[(n̄p − n̄p+k+q)m̄q+r+(1 − m̄r−) + n̄p+k+q(1 + n̄p)(m̄q+r+ − m̄r−)]

×δ(Ep+k+q − Ep + ξq+r+ − ξr− − Ek)

+ πI 2

4N2

∑
q,p,σ

[m̄p+qσ (1 − m̄pσ ) + n̄k−q(m̄p+qσ − m̄pσ )]

×δ(Ek−q + ξp+qσ − ξpσ − Ek)

+πI 2〈Sz〉
2N

∑
q

(m̄q−k+ − m̄q−)δ(ξq−k+ − ξq− − Ek). (41)

γsp is the damping due to the spin–phonon interaction:

γsp(k) = 2π〈Sz〉2

N3

∑
q,p,r

{F 2
kqpr [n̄r (1 + n̄q+r + n̄p) − n̄q+r n̄p]

×[(1 + N̄k−p−q)δ(Eq+r − Er + Ep − ω̄k−p−q − Ek)

+N̄k−p−qδ(Eq+r − Er + Ep + ω̄k−p−q − Ek)]
+F 2

kqpr (1 + n̄p)(1 + n̄q+r )n̄r [δ(Eq+r − Er + Ep − ω̄k−p−q − Ek)

−δ(Eq+r − Er + Ep + ω̄k−p−q − Ek)]}
+ π

4N

∑
q

F 2
kq [(1 + N̄q−k + n̄q)δ(Eq − ω̄q−k − Ek)

+(N̄q−k − n̄q)δ(Eq + ω̄q−k − Ek)]

+ π

2N

∑
q,p,ν

{R2(ν, p, q)[[(1 + N̄p−q−ν)(1 + N̄ν) + N̄νnk+q−p]

×δ(Ek+q−p + ω̄ν + ω̄p−q−ν + Ek)

+[N̄νN̄q+ν−p − (1+N̄q+ν−p + N̄ν)n̄k+q−p]δ(Ek+q−p − ω̄ν − ω̄q+ν−p+Ek)]
+R(ν, p, q)R(p − q − ν, p, q)[(1 + N̄p−q−ν)(1 + n̄k+q−p)

×δ(Ek+q−p + ω̄ν + ω̄p−q−ν + Ek) − [N̄q+ν−p + (1 + N̄q+ν−p)n̄k+q−p]
×δ(Ek+q−p − ω̄ν − ω̄q+ν−p + Ek)]}
+ π

2N

∑
q,p,ν

R2(ν, p, q)[(1 + N̄q+ν−p)N̄ν + (N̄q+ν−p − N̄ν)n̄k+q−p]

×[δ(Ek+q−p + ω̄ν − ω̄q+ν−p + Ek) + δ(Ek+q−p − ω̄ν + ω̄p−q−ν + Ek)]

+4π〈Sz〉2

N3

∑
q,p,ν,r

{R2
νkpqr [n̄r (1 + n̄q+r + n̄p) − n̄q+r n̄p][(1 + N̄k−q−p−ν + N̄ν)

×δ(Eq+r − Er + Ep + ω̄ν + ω̄k−p−q−ν − Ek)

+(N̄q+p+ν−k + N̄ν)δ(Eq+r − Er + Ep − ω̄ν − ω̄p+q+ν−k − Ek)]
+R2

νkpqr (1 + n̄p)(1 + n̄q+r )n̄r (N̄q+p+ν−k + N̄ν)[δ(Eq+r − Er + Ep + ω̄ν

−ω̄p+q+ν−k − Ek) − δ(Eq+r − Er + Ep − ω̄ν + ω̄k−p−q−ν − Ek)]}
+4π〈Sz〉2

N3

∑
q,p,ν,r

R2
k−q−p−ννpqr [n̄r (1 + n̄q+r + n̄p) − n̄q+r n̄p](1 + N̄k−q−p−ν)

×[δ(Eq+r − Er + Ep + ω̄ν + ω̄k−p−q−ν − Ek)
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−δ(Eq+r − Er + Ep − ω̄ν − ω̄p+q+ν−k − Ek)]

+ π

2N

∑
q,p,ν,µ

{T 2(µ, ν, p, q)[[(1 + N̄p−q−µ−ν)(1 + N̄ν)(1 + N̄µ)

+N̄p−q−µ−ν(1 + N̄ν + N̄µ)n̄k+q−p]
×δ(Ek+q−p + ω̄µ + ω̄ν + ω̄p−q−ν−µ − Ek)

+[N̄q+ν+µ−pN̄ν(1 + N̄µ + n̄k+q−p) − N̄µ(1 + N̄q+ν+µ−p + N̄ν)

×δ(Ek+q−p − ω̄µ − ω̄ν − ω̄q+ν+µ−p − Ek)]
+T (µ, ν, p, q)T (µ, p − q − µ − ν, p, q)[[(1 + N̄µ)(1 + N̄p−q−µ−ν)

+{(1 + N̄ν)(1 + N̄p−q−µ−ν) + N̄νN̄p−q−µ−ν}n̄k+q−p]
×δ(Ek+q−p + ω̄µ + ω̄ν + ω̄p−q−ν−µ − Ek)

−[N̄µN̄q+ν+µ−p + N̄µ(1 + N̄q+ν+µ−p)n̄k+q−p]
×δ(Ek+q−p − ω̄µ − ω̄ν − ω̄q+ν+µ−p − Ek)]}
+ π

3N

∑
q,p,ν,µ

T 2(µ, ν, p, q)[(1 + N̄q+µ+ν−p)(1 + N̄ν)N̄µ

+{N̄q+µ+ν−p(1 + N̄ν + N̄µ) − N̄νN̄µ}n̄k+q−p]
×[δ(Ek+q−p + ω̄µ + ω̄ν − ω̄q+ν+µ−p − Ek)

+δ(Ek+q−p − ω̄µ − ω̄ν + ω̄p−q−ν−µ − Ek)]

+π〈Sz〉2

3N3

∑
q,p,ν,µ,r

{T 2
µνkqpr [n̄r (1 + n̄q+r + n̄p) − n̄q+r n̄p]

×[{N̄νN̄µ + (1 + N̄ν + N̄µ)(1 + N̄k−p−q−ν−µ)}
×δ(Er+q − Er + Ep + ω̄ν + ω̄µ + ω̄k−p−q−ν−µ − Ek) + N̄p+q+ν+µ−k

×(1 + N̄ν + N̄µ)δ(Er+q − Er + Ep − ω̄ν − ω̄µ − ω̄p+q+ν+µ−k − Ek)]
+T 2

µνkqpr(1 + n̄p)(1 + n̄q+r )n̄r [N̄p+q+ν+µ−k(1 + N̄ν + N̄µ) + N̄νN̄µ]
×[δ(Er+q − Er + Ep + ω̄ν + ω̄µ − ω̄p+q+ν+µ−k − Ek)

−δ(Er+q − Er + Ep − ω̄ν − ω̄µ + ω̄k−p−q−ν−µ − Ek)]}
+π〈Sz〉2

3N3

∑
q,p,ν,µ,r

T 2
µk−p−q−µkpqr [n̄r (1 + n̄q+r + n̄p) − n̄q+r n̄p]

×N̄µ(1 + Np+q+ν+µ−k)[δ(Er+q − Er + Ep + ω̄ν + ω̄µ + ω̄k−p−q−ν−µ − Ek)

−δ(Er+q − Er + Ep − ω̄ν − ω̄µ − ω̄p+q+ν+µ−k)] (42)

where

Fkqpr = [F(q, k − p) + F(p − r, k − q − r)]
−[F(k − q, p) + F(k − p + r, q + r)]

Rνkqpr = [R(ν, q, k − p) + R(ν, p − r, k − q − r)]
−[R(ν, k − q, p) + R(ν, k − p + r, q + r)]

Tµνkqpr = [T (µ, ν, q, k − p) + T (µ, ν, p − r, k − q − r)]
−[T (µ, ν, k − q, p) + T (µ, ν, k − p + r, q + r)].

At T = 0 we obtain forγ s(k, T = 0)

γ s(k) = π

4N

∑
q

F 2
kqδ(Eq − ω̄q−k − Ek)

+ π

2N

∑
q,p,ν

[R2(ν, p, q) + R(ν, p, q)R(p − q − ν, p, q)]

×δ(Eq+r − Er + Ep + ω̄ν + ω̄k−p−q−ν − Ek)

+ π

3N

∑
q,p,ν,µ

[T 2(µ, ν, p, q) + T (µ, ν, p, q)T (µ, p − q − µ − ν, p, q)]

×δ(Er+q − Er + Ep + ω̄ν + ω̄µ + ω̄k−p−q−ν−µ − Ek). (43)
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We can see that atT = 0 the spin waves are damped due to the spin–phonon interaction if
the δ-function can be satisfied.

At T > TC , γss(k) = 0, i.e. the spin-wave damping in the high-temperature region is
due to the s–d and s–p interaction.

The temperature dependence of the spin-wave damping is presented in figure 8. At
low temperatures the damping is very small, the spin-wave energyEk is greater than the
damping term. ApproachingTC , γ s(k) increases strongly. The damping parts, due to the
s–d and s–p interactions, predominate over this, which is due to the spin–spin interaction.
Therefore we have

γss(k) � γsp(k) 6 γsf (k). (44)

Figure 8. Temperature dependence of spin-wave damping withF = 23 cm−1, R = −18 cm−1,
T = 1.4 cm−1 andω0 = 100 cm−1: curve 1, total spin-wave dampingγ s(k); curve 2, spin-wave
dampingγsd (k) from the s–d interaction; curve 3, the spin-wave dampingγsp(k) due to the s–p
interaction.

5. Conclusions

The present paper presents a study of the anharmonic effects in ferromagnetic
semiconductors. It has been found that the anharmonic spin–phonon and phonon–phonon
interactions modify the initial phonon frequency. The temperature dependences of two
modes withω0 = 100 cm−1 andω0 = 381 cm−1 have been calculated numerically. These
modes display a non-linear temperature dependence. AtT 6 TC this behaviour can be
explained as due to the influence of the spin ordering on the phonon modes. Only the
anharmonic phonon–phonon interaction could not explain the temperature dependence below
TC . If we take into account only the third-order phonon–phonon interaction, we obtain a
linear temperature dependence. The theoretical results are in very good agreement with the
experimental data which were published by Wakamura and Arai [2]. The renormalized spin-
wave energy has been obtained too. The spin–phonon interaction causes a renormalization
of the spin–spin interaction constantJ0 → Jeff , which is now temperature dependent.
The spin–phonon interaction has renormalized the phase transition temperatureTC . Phonon
damping and spin–wave damping have been evaluated, taking into account higher-order
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anharmonic terms, and have been numerically calculated using model parameters for
CdCr2Se4. The influences of the s–s, s–d and s–p interactions on damping have been
discussed. It has been found that the spin–phonon anharmonic terms play an important role
at low temperatures, whereas the anharmonic phonon–phonon interaction is important at
T > TC . The results for damping are in agreement with the experimental data [2, 11].

In conclusion it has to be noted that correct results for the spin-wave energy and
phonon energy and also for spin-wave damping and phonon damping in ferromagnetic
semiconductors require the consideration of the third- and fourth-order anharmonic terms
in the spin–phonon and phonon–phonon interactions.
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